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1. Introduction

The qualitative study of differential equation can be seen in the work of Henry
Poincare, whose interest was to look at the problems in celestial mechanics and
thereby understand the stability of solar system (model as an n-body prob-
lem) in a grand fashion. As a result, dynamical system took birth and in the
present context, it means a one parameter group of transformation of space,
sometimes called a phase space with the parameter representing time (which
would be continuous or discrete). The theory focuses on the long-term behavior
of the trajectories of points subject to under transformation. In the 1950’s,
Kolmogorov and Sinai characterized followed by Smale in 1960’s on hyperbolic
dynamics. In 1970’s, new outlook and new challenges encountered. With the
aid of computers, the research could come up with abundant examples whose
dynamics were dominated with dynamical systems, providing those examples,
characterizing flows, and understanding the stability of related issues associated
with them. We are going to survey some of these developments under Anosov
diffeomorphism which refers to the map which are hyperbolic on the entire man-
ifold under consideration and axiom A where such flows are satisfied with maps
that a hyperbolic uncertain essential parts of the manifold.

In the second section, we have given a brief of account of invariant measure
(measure rigidity) associated with the flows on dynamical system by providing
simple examples. The exposition assumes some familiarity with measure and
probability measure on a space (some of this definition and examples are men-
tioned in the introduction for clarity). The third section relates to the notion
of stability. Here, we consider system of ordinary differential equations for a
function f defined C™ and taking values to C" with fixed point at the origin.
Around the fixed point, evolution of the system is studied. In the fourth sec-
tion of this exposition, we have considered an interesting connection between
number theory and symbolic dynamics that were already seen from the light of
Diophantine approximations for the sets which are characterize as badly approx-
imable sets for geodesic flows and their associated orbits. To conclude, some
open problems and future directions are cited. The exposition is some sort of
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survey that reflects the developments the modern theory of dynamical systems
and their applications.

Example 1.1 (Rotations of a Circle). We will first look at a circle, often con-
sidered as a one dimensional torus T'. The circle St can be presented as

St={zeC:|z|=1} ={z=e*/" .z € R}.

In additive notation,
St = Z\R.

These two modules are isomorphic to each other by the logarithm map z =
e?™/* sz (mod 1).
Let Ry denote the rotation of St by angle 270. The map Ry is given by

Ro(2) = 2¢*™ and Ry(z) =z +6 (mod 7Z)

in multiplicative and additive models of S'. The orbit of z = *™* ¢ S! under
iterations of Ry is respectively equal to

{2e2™™% . € Z and {x +nH (mod 1):n € Z}.

The above example can be realized for higher dimensional torus.

1.1 Generalities:

We gather some definitions, familiar results from analysis, algebra and geometry
with examples that find their place in our study that fall under the scope of
dynamical systems. The underlying set is either a group, topological space,
and more so vector spaces with functions defined on them and taking values
again in them. Number sets like N, Z,Q,R and C occur in our discourse which
enjoy good mathematical properties to strengthen our understanding of abstract
association with the topological, geometric or algebraic entities.

By a group, we mean a non-empty set G with a product map P: GG — G
satisfying the following properties:

e Pisclosed; ie., g, € G = P(g,9') =949 €G.
e P is associative, i.e., g(¢'g") = (99')g"Vg,9', 9" € G.

e If g is in G then there is an element hg in G such that g« hg = hg*g = ¢;
hg constitutes an identity element in G, we denote it by e. This is true
for all elements g in G.

e For each ¢ in G , there exists ¢’ in G such that g¢' = g'g = e. The element
g' (also written as g—1) is called the inverse of g in G. Note that e, the
inverse elements g~ for a given g, are unique in G.



The product g¢g’ need not be equal to ¢’'g. If, g¢’ = ¢’g for all g, ¢’ € G then we
say that the group G is an abelian (or commutative ) group.

The product operation P in G is an abstract operation. If P(gg') = g + ¢’
for g,¢’ € G then we say that the product operation is an addition. Familiar
examples of groups include, Z,Q, R and C under additive operation P. The set
{1, —1} under product multiplication forms a group, and {1} under multiplica-
tion forms a group (called a trivial group).

From the geometric point of view, C under addition and non zero elements
of C under multiplication form groups. Along with the circle group S!, are some
well-known examples of groups.

A subset H of a group G is a subgroup if it has the following properties:

e (Closure: If a and b are in H, then ab is in H.
e lisin H.
o If aisin H, thena 'isin H

Another important group which will come in our discourse is the notion of
quotient group.

Given a group G and a normal subgroup N of G, the quotient group (or
factor group) G /N, which is defined as the set of left cosets of N in G, that is,

G/N ={gN|geG}.

The group operation on G/N is given by (gN)(hN) = (gh)N is well defined
because N is normal in G.

Since quotient topology comes under our study, we will define it briefly for
completion.

Definition 1.2 (quotient map). Let X and Y be topological spaces; let p : X —
Y be surjective map. The map p is said to be quotient map provided a subset
U of Y is open inY iff p~2(U) is open in X

The notion of quotient map is used to construct a topology on a set.

Definition 1.3. If X is a space and A is a set and if p: X — A is a surjective
map, then there exists exactly one topology T on A relative to which p is a
quotient map; it is called the quotient topology induced by p

2. Invariant Measure

We define measure on a space X (metric space, topological space, or could even
be manifold) as follows:

Definition 2.1. A measure p on X is a set function on X taking values in R
such that,

i. u>0, di.e., puis positive definite for A C X and u(¢) = 0.



1. w s sub additive. That is,
p(UA) <> p(4), AeX

and
p(UA) = pu(A),
if the union is pairwise disjoint.

A measurable space is a pair (X, B), where B is a sigma field for the collection
of subset of X satisfying the properties, A’ € B whenever A € B, UA is in
B for A € B, arbitrary union of members of B is closed and if A;,4; € B
then NP_; A; € B finite intersection closed on (X, B). A measure y makes X a
measurable space and we write it as (X, B, ). Moreover, a probability measure
means u(X) = 1.

To know what an invariant measure is, we introduce a transformation on
X which is nothing but dynamical system associated with X. For example,
consider X = R/Z, the circle group (or 1-dimensional torus) T(= S'). Its
members are cosets of the form r + Z, for r € R. Let us agree that a measure
on X is to assign a number to every continuous function f € C(X), namely its
integral [ f(x)du(x), or just [ fdu with respect to p.

Further, we want the following properties to hold, for f — [ fdu to be
linear, and that f > 0 implies that [ fdu > 0. For the measure p to be
probability measure, we want that the integral of the constant function 1x to
be one. The Riemann integral fol f(r+Z)dr for f € C(R/Z), in this regard,
will be a probability measure. Also called the Lebesgue measure my [4].

To this end, suppose T' : X — X be a continuous map. A probability
measure g on X is an invariant if,

[ fdn= [ roran

Remark 2.2. One should think of T as time evolution of the dynamical system,
f to be the outcome of the physical experiment, and the integral as the expected
value for the outcome of f. Then, the invariance of i is simply the requirement
that the experimental value of the outcome is same now and one unit time later.

Remark 2.3. The set M(T) of the invariant probability measure is critically
dependent on the transformation T. For many maps T, this set is very large
and it is impossible to give a reasonable description. However, sometimes we
also have rigidity of invariant measures: the set of invariant measures shows a
surprising amount of structure.

3. Stability related ideas

In the study of dynamical systems, stability issues around fixed points (or in-
variant sets) arise quite often. For instance, the system of differential equations,

dz
% e (1)
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for z € C" and f : C" — C™ is holomorphic (analytical) with f(0) = 0 satisfies
z(t) = 0 as a solution. This solution is said to be stable (past and future) if
points near the origin remain near the origin under transformation. More aptly,
we say that z = 0 is stable if for every neighborhood U of 0, there exists a
neighborhood V with 0 € V' C U such that z(0) € V implies z(t) € U for all
teR.

A well known theorem due to Lyapunov [6] says that a necessary condition
for the future stability of z = 0 is that the eigen values of D f; have non-positive
real part, for the past stability they must have non-negative real part. Thus,
for z = 0 to be stable the eigen values must be purely imaginary. Also see [1]
for the stability of (1) for z = 0.

The following theorem clarifies the stability issues of (1) :

Theorem 3.1. The solution z = 0 of (1) is stable if and only if there exists
a holomorphic transformation g : C* — C™, taking z — ¢ with g(0) = 0 and
Dgo = I which brings (1) to the system if differential equations,
d¢
—=A 2
% A )
where A is the Jacobian of f at 0 and A is diagonalisable with purely imaginary
eigenvalues.

Another interesting way of noticing (1) under the framework (we mean sta-
bility of solutions of the system of equations), by regarding the equation giving
rise to integral curves of the holomorphic vector fields,

X =Y i) 3)

Let M be the set of holomorphic vector field which vanish at the origin, and
let G be the group of holomorphic transformations which vanish at the origin,
with Dgg = I. Then, there is a natural action G x M — M of G on M given
by

(9, X) = gX
where  gX(2) = 9. X (97" (2))
and g, is the induced map on the tangent bundle.
In M two vector fields X,Y are said to be equivalent if,

X =gY for some g € G

Now, given a vector field X € M, the linear part of X is given by

(X)(tangential part) = Z aj,kzj(%k (4)
7,k=1
where of
=2k
Ajk = 8Zj (0)



Under this setting, the equation (1) can be expressed in the form (2), is same
as that there exists a g such that

e _dgde

=S =2 =0 = t2)

Ag(z) = AC o

i.e., such that

A = g*f(gfl(C))

is condition that the corresponding vector field X whose linear part is (X).

In summary, the stability of equation (1) is closely connected to the theory of
normal forms of holomorphic vector fields and in particular with the structure
of the orbits of linear vector fields under the action of G. It is very difficult
to assert a necessary and sufficient condition which determines when a vector
field is equivalent to its linear part. Indeed the conditions required are very
delicate in the situation we are most interested, when its eigen values are purely
imaginary.

4. On Badly Approximable Numbers

Motivation to study them comes from Diophantine approximations. It may be
recalled that the theory of Diophantine equation is concerned with the solv-
ing equation of integer solutions as encountered by Diophantine of Alexandria
around 3rd century CE. Unfortunately, this requirement for integer solutions
falls short in certain equations of interest. In the attempt to overcome this sit-
uation and see that the requirement of integer solution exist is equivalent that
rational solution exists. For instance, the polynomial function f(z,y,z) = 0
given by 22 + y? — 22 = 0 admits integer solution and this is an equivalent to

(& ()10

admitting rational solutions.
Such curves were seen as Fermat’s curves (unit circle in R? is Fermat’s curve).
Bad news: If both fails, this leads to irrationals and their approximations
(either for good or bad).

Definition 4.1. A real number « is said to be badly approximable if there exists
0 > 0 such that,

a—’> (5)

forp,q e Z,q > 0.

We denote the set of badly approximable numbers by B.

Since every real number is a limiting sequence of rationals, such a B is
reasonable to anticipate.

S. G. Dani, in his paper [2], refers to such numbers that interest some results
on bounded geodesics, bounded orbits and similar topics, with the purpose of
highlighting certain results explaining underlying ideas [9].



Their sets are of measure (Lebeague measure) zero, but do matter for their
Hausdorff measure with respect to the usual metric is one, which is maximum
possible for any subset of R

This result due to V. Jarnik, [8], was strengthened by W. M. Schmidt who
showed it to be a winning set for a certain game which implied in particular
for an open in interval I (given) and a sequence of functions fi, fa,... on I
satisfying certain conditions and the set of « in I such that f;(«) € B.

5. Application of Measure Rigidity

Group actions on homogeneous spaces and classification of invariant measures
have some interesting implications and applications [5]. Here, the group that
acts on homogeneous spaces such as SL,(R) is a simple non-compact subgroup
that is generated by unipotent one-parameter subgroups. Moreover, they are
seen as the image of the homomorphism

U:R - SL,(R)

given by,
t—U(t) =exp(ty,) fort eR
for m € Mat,,(R), m is nilpotent.
For instance,
t
ut) = ( 0) diag(e? )
0 ez

Hence,
X, =SL,(Z)\SL,(R)

turns out to be the subgroup, H of SL,(R) and then group action [3] on X,, by
their right action.

To prove long standing Oppenheim conjecture [7] by Furstenberg and Mar-
gulis.

We also came to know the following conjectures are open:

Conjecture 1. Let n > 3 and let
A:{dia’g(ala"'aan):ala"'aan >Oaa1"'an:1}~

Then any « € X,, = SL,(Z) \SL,(R) for which A has compact closure in X,
must actually belong to a periodic (i.e. compact) orbit.

Conjecture 2. Let n > 3 and A be as above. Then any A-invariant and
ergodic probability measure on X, is necessarily the normalized Haar measure
on a finite volume orbit H of an intermediate group A C H C SL,(R).

Conjecture 3. Let pu be an invariant and ergodic probability measure on T =
R/Z for the joint action of x — 2x and x — 3x. Then either u equals the
Lebesgue measure or must have finite support (consisting of rational numbers).
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