

On Art, Artifacts and Mathematical Imagery

T. VENKATESH*, J. VENKATA RAMANA RAJU†, T. VEENA‡

1. ABSTRACT

The inherent connection between certain kind of art and mathematical illustration lies in their shared foundation of logic, faithful representations, and intuitive understanding. In the past mathematical ideas such as non-Euclidean geometry, fractional dimensions, or complex function theory which are far removed from everyday experience were successfully represented by a combination of creativity and mathematical maturity. But one can argue that successful artistic and computational visualizations existed even without a background of mathematical rigor. It is intriguing to get into the complexity of such cognitive abilities of artists who have created some masterpieces. Of late we see also a collaborative effort between the two communities where creative artifacts manage to depict profound mathematical complexity with some clarity, proving that mathematics is not an obscure or distant field but is accessible for general public appreciation. The thoughts embodied in this exposition are a result of discussions that happened during a pedagogy based academic meeting where in technology, visual explorations and illustrations were dealt with. One can ask if mathematics is a central part of the thought process of such an artist and conversely did art-form influence some kind of mathematics. Also is it always geometry the core mathematical insight involved?. Artists right from Leonardo da Vinci to M. C. Escher seem to have exemplified that mathematical intricacies are unraveled through display on canvas or 3-d models. One can include other art- forms like Origami , Fiber art and mathematical sculptures. Such artistic representations not only bridge disciplines but also invite broader audiences including non-mathematicians to engage with subtle topics and deep mathematical ideas.

*Director, Mathematical Science Institute Belagavi (MSIB)

†Assistant Professor, DAMS- School of Sciences JAIN Deemed University, Bengaluru & Intern, MSIB

‡Administrative Officer, Mathematical Science Institute Belagavi (MSIB)

2. INTRODUCTION

Mathematics is frequently misunderstood as a dry, inaccessible domain reserved for specialists. However, at its core lies a deep aesthetic appeal. Concepts such as symmetry, fractals, topology, and geometry possess intrinsic beauty that can be appreciated visually, even without formal mathematical training. The elegance of a well-formed equation or the mesmerizing pattern of a Mandelbrot set speaks to a universal sense of order and wonder. Visual art, with its capacity to evoke emotion and provoke thought, becomes a powerful medium for expressing these abstract mathematical ideas. Artists who intuitively grasp mathematical principles, whether through geometric constructions, recursive patterns, or spatial transformations translate them into tangible forms that captivate and inspire. Many in the mathematical community feel that the right intuition be provided to intricate mathematical results instead of them being perceived as mere symbolic manipulations. To this end we begin with the idea of visual depictions not necessarily born out of such a need to illustrate a mathematical concept. However either it is a coincidence or there must have been a collaborative effort when artists like Leonardo da Vinci and Kepler displayed on canvas the ideas pertaining to projective geometry and non-Euclidean tilings respectively. It remains for the historians of mathematics to unravel the above mentioned mystery.

For now in this exposition we try to showcase a myriad collection of artistic ideas and visual explorations that connect to mathematics in some or the other way. Few artists embody this synthesis more vividly than M.C. Escher. Though not formally trained in mathematics, Escher's work is a masterclass in visualizing complex mathematical phenomena. Of course Escher the Dutch based artiste not only dealt with mathematically inspired art but also several of his other works were also derived from nature and society. But we emphasize his work that connects to patterns that suit to mathematical thinking. His tessellations, impossible constructions, and explorations of infinity and symmetry have fascinated both artists and mathematicians alike. Escher's art demonstrates that mathematical intuition can emerge from visual exploration, and that artistic insight can illuminate concepts that even seasoned mathematicians find challenging. His legacy underscores an important truth: mathematical beauty is not confined to equations and proofs. It can be sculpted, painted, and etched, made visible in ways that resonate with the human experience. Motivations Depicting mathematical phenomena is often a formidable task. Many concepts exist in dimensions beyond our physical intuition or involve abstract structures that defy conventional representation. Yet, artists have risen to this challenge, creating works that render the invisible as visible. Visual explorations in mathematics are a necessity because they offer intuitive entry points into complex ideas, making abstract concepts tangible and emotionally resonant. They reconnect fragmented branches of mathematical thought to their foundational roots, revealing coherence and beauty often lost in technical formalism. By engaging diverse cognitive styles and inviting broader audiences, including those discouraged by traditional methods, visual mathematics fosters inclusion, curiosity, and

joy. Most importantly, it affirms that mathematics is not just a tool for experts, but a deeply human endeavor worth sharing with the world

From three-dimensional models of algebraic surfaces to digital visualizations of chaotic systems, these artistic interpretations serve as bridges between comprehension and imagination. Such works are not mere illustrations; they are explorations. They invite viewers both mathematicians and laypeople alike to engage with ideas through form, color, and space. In doing so, they democratize mathematics, making it accessible not through simplification, but through sensory experience. One of the most noteworthy aspects of this interplay is its inclusivity. One need to be a mathematician to appreciate the symmetry of a snowflake, the rhythm of a Fibonacci spiral, or the elegance of a Penrose tiling. These patterns speak to a primal aesthetic sensibility, one that artists have long harnessed to evoke harmony, tension, and movement. Indeed, many artists who are not formally trained in mathematics have produced works that in a way connect deeply with mathematical themes. Their creations often arise from a fascination with pattern, repetition, and structure elements that are foundational to both art and mathematics. This cross-pollination enriches both fields, fostering a culture where intuition and rigor coexist.

3. COLLABORATIVE EFFORT

Frank A. Farris, [4] in his article "Mathematical Art as a Discipline," points to the rise of specific associations, conferences, and publications as evidence that mathematical art has solidified into a formal discipline with its own community norms. We have identified some vibrant communities worldwide that engage in a professional way in these aspects.

A) The Bridges Organization and Conference: Founded in 1998 by Reza Sarhangi, this organization runs the highly influential annual Bridges Conference on Mathematics and Art. This conference is a primary international venue where mathematicians and artists from various disciplines converge to share and discuss their work

B) SIGMAA Arts is another such organization viz Special Interest Group of the Mathematical Association of America for Mathematics and the Arts . This group focuses on fostering interest and collaboration between mathematics and artistic practices, promoting awareness, interdisciplinary research, and pedagogy around mathematically inspired art and visualization techniques. This includes using mathematics in the analysis and enhancement of creative processes, as well as exploring the artistic nature of mathematical visualization. Scientific visualization under SIGMAA Arts thus aims to support and encourage connections between math and the arts, especially where visualization is a key component.

C)The Science Museum in London hosts the prominent Mathematics: The Winston Gallery, which uses a thought-provoking, visually stunning architectural design (by Zaha Hadid Architects) to showcase how mathematics connects to every aspect of life, demonstrating its beauty and practical application. **Educational**

Outreach: Institutions like The Courtauld offer "Art and Maths" workshops that encourage students to explore mathematical concepts like tessellation and symmetry through art historical collections.

Hands-on Museums: The Mathematikum in Gießen is a hugely successful science museum dedicated entirely to mathematics, featuring over 150 interactive, hands-on exhibits (like mirrors, soap films, and puzzles) to let people of all ages experience mathematics visually and practically, without relying on formulae. Further Centers like the Hausdorff Center for Mathematics (Bonn) organize "Mathematical Salons" and other public outreach events to communicate the fascination of mathematics to a wider audience, which often includes visual aspects. The Mathematics Museum of Catalonia (MMACA) in Cornellà is a dedicated space promoted by the Association to Promote and Create a Mathematics Museum in Catalonia. It offers a permanent exhibition of "*Mathematical Experiences*" featuring games and construction sets to address mathematics from a practical, fun, and visual perspective.

One should mention the Indian effort at MPE 2003, led by ICTS-TIFR. The exhibition specifically featured around 30 hands-on, highly visual exhibits on mathematical themes like structures (Tensegrity, Soap Bubbles), patterns (Tessellations, Escher-inspired art), and dynamics (Chaotic Pendulum, Soliton). This was a significant creative output assisted by Sristi foundation. MoMath, a world-renowned museum dedicated entirely to interactive, visually engaging mathematics, was an active partner. Its mission aligns perfectly with the MPE project's goal of making complex mathematical concepts tangible and accessible to the public.

4. THE VALUE OF MATHEMATICAL IMAGERY

This section discusses possible advantages of promoting visual explorations. The rise of mathematical artists and visual storytellers is not just a cultural trend but it's a pedagogical revolution. When students encounter tessellations, fractals, origami, or data visualizations, they begin to see mathematics not as a cold, abstract discipline but as a vibrant language of patterns, symmetry, and meaning. This visibility matters. It signals to learners that joy, curiosity, and aesthetic appreciation are legitimate entry points into mathematical thinking. Francis Su's Mathematics for Human Flourishing reframes mathematics as a deeply human endeavor, one that cultivates virtues like persistence, creativity, and hope. His work challenges educators to ask not just what students learn, but why they learn it. Mathematics, in this view, is not merely a tool for solving problems but a means of personal and communal growth. "Mathematics is for anyone who seeks truth, beauty, and justice." The mathematical community is undergoing a quiet but profound transformation. For too long, mathematics has been portrayed as a domain reserved for the elite few, those who can manipulate symbols with ease or solve abstract problems in isolation. But this narrow framing has closed doors to countless individuals who might have thrived if only they had been welcomed in through beauty, creativity, and human connection.

When educators or institutions prioritize rigor over accessibility, they risk alienating learners who need a different kind of entry point.

Annette Emerson's work and the one by Stephen Ornes show that there is public appetite for this kind of engagement. Also within mathematics we have issues as shown below which can be resolved with increasing engagement.

External prejudice can be a powerful barrier to mathematical engagement, especially for young people who show early promise. Societal biases, whether subtle or overt, often shape perceptions of who "belongs" in mathematics. These can stem from parents who prioritize more conventional careers, peers who mock intellectual curiosity, or cultural narratives that portray mathematics as inaccessible or irrelevant. Such influences can erode confidence and stifle ambition, leading talented individuals to abandon their mathematical interests before they fully blossom. Addressing this issue requires not only inclusive education but also a cultural shift that celebrates diverse mathematical journeys and affirms that curiosity and creativity (not conformity), are the true hallmarks of mathematical potential.

Specialization in mathematics, while fostering profound expertise, has also led to a fragmentation of the field where researchers often operate in isolated silos. This deep but narrow focus can result in brilliant technical accomplishments that remain opaque or irrelevant to those outside the immediate subdiscipline. As a consequence, the broader public and even fellow mathematicians may struggle to grasp the significance or beauty of such work. The lack of cross-disciplinary dialogue and accessible exposition risks turning mathematics into an insular pursuit, disconnected from the collaborative spirit of human inquiry. Bridging these gaps requires intentional efforts to communicate, visualize, and contextualize mathematical ideas in ways that invite engagement beyond the expert circle.

Loss of context in mathematics can render even the most groundbreaking discoveries isolated, stripping them of their connection to the wider tapestry of human understanding and societal relevance. When mathematical ideas are presented without narrative or visual engagement, they risk becoming abstract artifacts, appreciated only within narrow academic circles. This is where mathematical exposition and mathematical art serve as powerful antidotes. Exposition breathes life into equations and theorems by weaving them into stories of curiosity, struggle, and insight, while mathematical art transforms abstract concepts into visual experiences that resonate emotionally and intellectually. Together, they restore context, making mathematics not just comprehensible but compelling an integral part of our shared cultural and intellectual journey.

5. TECHNOLOGICAL BREAKTHROUGHS

Modern technology, including sophisticated software and programming libraries, has definitely expanded the possibilities for creating 'high-fidelity' interactive, and complex mathematical visualizations. Python libraries like Matplotlib, Seaborn, Plotly are used to directly input functions that have to be visualized

especially statistical data and behavior of certain functions. Further dedicated softwares are in use these days. For instance Vega provides a "visualization grammar" for complex projects. Vega provides a "visualization grammar"—a declarative language that describes how data should be mapped to visual properties (marks, scales, and axes). This abstract approach is crucial for building custom, highly complex, and web-embeddable visualizations without writing low-level drawing code, allowing researchers to focus on the mathematical model rather than the rendering pipeline.

Illustrator is used for vector-based graphics and refining the look of data points and charts. A free and open-source 3D creation suite called Blender is used for complex 3D data models and rendering. In fact this software can also be used for animation purpose. A very sophisticated software package is Autodesk Maya for high-end visualization projects.

C++ Libraries: Libraries like *libigl* are widely used in geometry processing research and development. They provide functions for computing discrete differential operators (e.g., Gaussian curvature, Laplace-Beltrami operator) on meshes, which are the core of DDG (Discrete differential geometry). *Cinolib* is another C++ library mentioned that supports various mesh types and provides discrete differential operators. A package called Houdini has node-based environment which is excellent for visual experiments.

Vector Graphics Software (e.g., Adobe Illustrator/Inkscape): While not used for the initial computation, programs like Illustrator are essential for post-processing and refinement. They allow mathematicians and designers to convert plots into high-quality, vector-based graphics (like SVGs) for publications, ensuring crispness and scalability, and also to refine the aesthetics.

6. CONCLUSION

The relationship between mathematics and visual art is not merely a collaboration but it is a dialogue. It challenges the notion that beauty and logic are mutually exclusive, and it reveals that complexity can be both intellectually profound and visually stunning. As artists continue to explore mathematical ideas, and mathematicians embrace visual intuition, the boundaries between these disciplines blur, giving rise to new forms of understanding and expression. Visual exploration is a powerful method for understanding complex mathematical concepts discovering patterns, and sometimes validating some points too. In this convergence, we find not only aesthetic pleasure but also a deeper appreciation of the patterns that shape our world. Mathematics becomes more than a tool, it actually becomes a muse. And art, in turn, becomes a lens through which the elegance of mathematics is revealed.

One of the most compelling aspects of this interplay is its inclusivity. You do not need to be a mathematician to appreciate the symmetry of a snowflake, the rhythm of a Fibonacci spiral, or the elegance of a Penrose tiling. These patterns

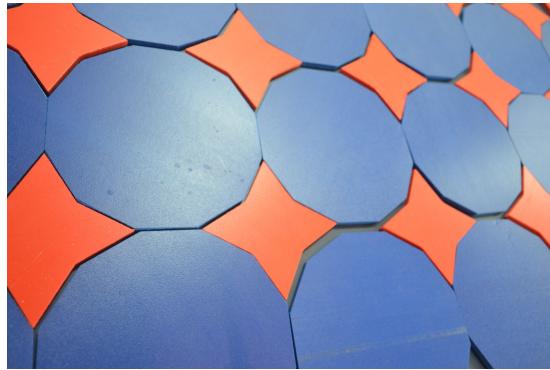


Figure 1: Tiling Artifact

speak to a primal aesthetic sensibility—one that artists have long harnessed to evoke harmony, tension, and movement.

Indeed, many artists who are not formally trained in mathematics have produced works that resonate deeply with mathematical themes. Their creations often arise from a fascination with pattern, repetition, and structure-elements that are foundational to both art and mathematics. This cross-pollination enriches both fields, fostering a culture where intuition and rigor coexist.

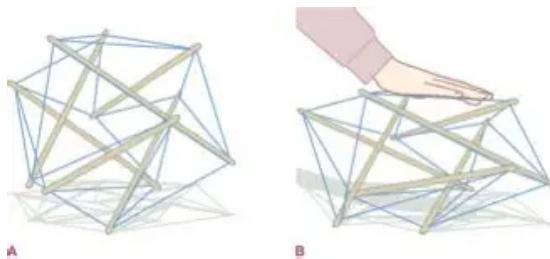


Figure 2: Tensegrity Artifact

- Recognizing mathematical art as legitimate mathematical work, not just outreach.
- Creating platforms where artists and mathematicians collaborate as equals.
- Funding and institutional support for interdisciplinary projects.
- Curricular integration of visual and creative approaches to mathematical thinking.

Here are some references to explore further:

Figure 3: Wall Paper Art

- C. Bruter says Mathematics and art can intersect in many ways [2, 1].
- Coxeter uses Symmetry and depicts them for aesthetics [3].
- Hofstadter explores the beauty obtained by recursive functions via complex function theory [5].
- An excellent reference as to how pedagogy is enhanced through illustrations is - Needham's geometric approach to complex analysis which is visually quite appealing. [6].

Acknowledgment:- Figure 1 and Figure 3 are pictures clicked at MPE – 2013, J. N Planeterium, Bengaluru.

References

- [1] AMS Feature Column. Mathematics and art. <https://www.ams.org/publicoutreach/feature-column/fcarc-art1>, n.d. American Mathematical Society.
- [2] Claude Bruter, editor. *Mathematics and Modern Art: Proceedings of the First ESMA Conference, Held in Paris, July 19–22, 2010*. Springer Science Business Media, 2012.
- [3] H. S. M. Coxeter. *The Symmetry Perspective: From Equilibrium to Chaos*. W. H. Freeman, 1991.
- [4] F. A. Faris. Mathematical art as a discipline, 2021. American Mathematical Society.
- [5] Douglas R. Hofstadter. *Gödel, Escher, Bach: An Eternal Golden Braid*. Basic Books, 1979.
- [6] Tristan Needham. *Visual Complex Analysis*. Clarendon Press, 1997.